Abstract
Recent studies in construction waste and management (CWM) have mainly investigated the waste management chain from a static perspective and failed to take into account the dynamic nature of parameters and their correlation. In addition, the current studies of building information modeling (BIM)-based CWM failed to analyze the cost–benefits due to the lack of numerical economic benchmarks. To address the gap, this study developed a system dynamic (SD) model to analyze the economic aspects of construction and demolition (C&D) waste from using BIM. Causal loop and stock-flow diagrams are modeled based on the determined variables and their interrelationships. Standard sensitivity tests were then performed to establish the validity of the model under real system conditions. Different scenarios were applied to simulate and compare the model results in response to various policies. A case study was conducted to quantify the costs and the profits. Based on the comparison with the conventional approach and BIM-based method, BIM can reduce CWM cost by up to 57%. The findings also indicated that higher landfill charges will not be able to motivate managers to use sustainable CWM; conversely, increasing the modularity of design and earlier realization of net benefits will incentivize project managers to employ BIM-based CWM.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
48 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献