Design, Preparation and Performance Study of On-Chip Flow-Through Amperometric Sensors with an Integrated Ag/AgCl Reference Electrode

Author:

Zhang HeORCID,Chuai Rongyan,Li Xin,Zhang Bing

Abstract

To improve the reference potential stability of on-chip amperometric sensors, we propose a novel integrated Ag/AgCl reference electrode structure. This structure can refresh the saturated potassium chloride filling solution surrounding the Ag/AgCl electrode. We then designed a flow-through amperometric sensor and a multilayer microfluidic chip based on the integrated reference electrode. In order to improve the detection signal strength of the flow-through sensor, a numerical simulation model was established. The simulation results showed that a combination of (1) using a step-type detection cell structure that maintains micro-channel width while reducing micro-channel height, and (2) controlling the sample flow rate to limit the mass transfer of the sensor surface effectively, improves the detection signal strength. The step-type detection cell structure had dimensions of 200 μm × 200 μm × 100 μm (length × width × height), and the electroosmotic flow driving voltage was 120 V/cm. Finally, successful trace detection of Mg2+ and Pb2+ in the water was achieved using the amperometric sensor and microfluidic chip: detection limits were 5 μmol/L and 84 μmol/L. The preparation of an on-chip flow-through amperometric sensor with an integrated Ag/AgCl reference electrode will facilitate improved portability of microfluidic detection technology.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3