UKF-Based Observer Design for the Electric Brake Booster in Situations of Disturbance

Author:

Mei Mingming1,Cheng Shuo2,Li Liang1,Mu Hongyuan1,Pei Yuxuan1

Affiliation:

1. State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China

2. The Institute of Industrial Science, University of Tokyo, Tokyo 153-0041, Japan

Abstract

The motor-driven electric brake booster (E-Booster) can replace the traditional vacuum booster to realize the braking power assistance and active braking. Independent of extra sensors, this paper proposes a full-state observer for E-Booster based on Unscented Kalman Filter (UKF) in the presence of a driver’s input force disturbance. The electro-hydraulic system is first modeled, which includes a nonlinear hydraulic model and the reaction disk’s rubber model. The pre-compression is designed to produce linear power assistance based on the properties of rubber material. With the existence of the disturbance, the linear quadratic regulator (LQR) algorithm is used to track the pre-compression of the reaction disk so that E-Booster is developed into a closed-loop system to achieve power assistance. The proposed UKF observer can online estimate the states considering the controller input and disturbance input. To reduce the process error, the hydraulic p-V characteristic is fitted using the recursive least squares (RLS) method before observation. Furthermore, the simulation test and vehicle tests are performed to validate the observation effect. In the closed-loop test, UKF decreases residual error by 16% when compared to the typical Extended Kalman Filter (EKF). The simulation results remain consistent with the experimental results, demonstrating the effectiveness of the proposed method.

Publisher

MDPI AG

Subject

Control and Optimization,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3