Abnormal Behavior Monitoring Method of Larimichthys crocea in Recirculating Aquaculture System Based on Computer Vision

Author:

Wang Zhongchao1,Zhang Xia2,Su Yuxiang1,Li Weiye2,Yin Xiaolong2,Li Zhenhua1,Ying Yifan1,Wang Jicong1,Wu Jiapeng1,Miao Fengjuan3ORCID,Zhao Keyang1ORCID

Affiliation:

1. School of Marine Engineering Equipment, Zhejiang Ocean University, Zhoushan 316022, China

2. Fishery Research Institute of Zhoushan, Zhoushan 316021, China

3. College of Communications and Electronics Engineering, Qiqihar University, Qiqihar 161006, China

Abstract

It is crucial to monitor the status of aquaculture objects in recirculating aquaculture systems (RASs). Due to their high density and a high degree of intensification, aquaculture objects in such systems need to be monitored for a long time period to prevent losses caused by various factors. Object detection algorithms are gradually being used in the aquaculture industry, but it is difficult to achieve good results for scenes with high density and complex environments. This paper proposes a monitoring method for Larimichthys crocea in a RAS, which includes the detection and tracking of abnormal behavior. The improved YOLOX-S is used to detect Larimichthys crocea with abnormal behavior in real time. Aiming to solve the problems of stacking, deformation, occlusion, and too-small objects in a fishpond, the object detection algorithm used is improved by modifying the CSP module, adding coordinate attention, and modifying the part of the structure of the neck. After improvement, the AP50 reaches 98.4% and AP50:95 is also 16.2% higher than the original algorithm. In terms of tracking, due to the similarity in the fish’s appearance, Bytetrack is used to track the detected objects, avoiding the ID switching caused by re-identification using appearance features. In the actual RAS environment, both MOTA and IDF1 can reach more than 95% under the premise of fully meeting real-time tracking, and the ID of the tracked Larimichthys crocea with abnormal behavior can be maintained stably. Our work can identify and track the abnormal behavior of fish efficiently, and this will provide data support for subsequent automatic treatment, thus avoiding loss expansion and improving the production efficiency of RASs.

Funder

Fundamental Research Funds for Zhejiang Provincial Universities and Research Institutes

Basic Public Welfare Research Program of Zhejiang Province

Key Project of the Natural Science Foundation of Heilongjiang Province

Guidance Projects of the Key Research and Development Program of Heilongjiang Province

Projects of Zhoushan Science and Technology Planning

General scientific research project of the Department of Education of Zhejiang Province

National University Student Innovation and Entrepreneurship Training Plan

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3