Abstract
Sepsis is defined as life-threatening organ dysfunction caused by the dysregulated host response to infection. Despite serious mortality and morbidity, no sepsis-specific drugs exist. Endotoxemia is often used to model the hyperinflammation associated with early sepsis. This model classically uses lipopolysaccharide (LPS) from Gram-negative pathogens to activate the immune system, leading to hyperinflammation, microcirculatory disturbances and death. Other toxins may also be used to activate the immune system including Gram-positive peptidoglycan (PG) and lipoteichoic acid (LTA). In addition to these standard toxins, other bacterial components can induce inflammation. These molecules activate different signaling pathways and produce different physiological responses which can be taken advantage of for sepsis modeling. Endotoxemia modeling can provide information on pathways to inflammation in sepsis and contribute to preclinical drug development.
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
155 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献