Social Learning of Acquiring Novel Feeding Habit in Mandarin Fish (Siniperca chuatsi)

Author:

Peng Jian,Dou Ya-Qi,Liang Hui,He Shan,Liang Xu-Fang,Shi Lin-Jie

Abstract

Social learning plays important roles in gaining new foraging skills and food preferences. However, the potential role and molecular mechanism of social learning in acquiring new feeding habits is less clear in fish. In the present study, we examined the success rate of feeding habit domestication from live prey fish to dead prey fish, as well as the food intake of dead prey fish in mandarin fish with or without feeders of dead prey fish as demonstrators. Here, we found that mandarin fish can learn from each other how to solve novel foraging tasks, feeding on dead prey fish. In addition, the analysis of gene expressions and signaling pathways of learning through Western blotting and transcriptome sequencing shows that the expression of the c-fos, fra2, zif268, c/ebpd and sytIV genes were significantly increased, and the anorexigenic pomc and leptin a expressions were decreased in fish of the learning group. The phosphorylation levels of protein kinase A (PKA) and Ca2+/calmodulin-dependent protein kinase II (CaMKII) in the learning group were significantly higher than those of the control group, while the phosphorylation level of S6 ribosomal protein (S6) was lower. With the inhibitors of PKA and CaMKII signaling and the chromatin immunoprecipitation (ChIP) assay, we further found that the social learning of new feeding habits in mandarin fish could be attributed to the activation of the CaMKII signaling pathway and then the stimulation of the expression of the c-fos gene, which might be an important transcriptional factor to inhibit the expression of the anorexigenic gene pomc, resulting in the food intake of dead prey fish in mandarin fish. Altogether, our results support the hypothesis that social learning could facilitate the acquisition of novel feeding habits in fish, and it considerably increases the rate of subsequent individual food intake and domestication through the interaction between the learning gene c-fos and the appetite control gene pomc.

Funder

National Natural Science Foundation of China

Wuhan Morning Light Plan of Youth Science and Technology

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3