Abstract
Glioblastomas (GBs) frequently display activation of the epidermal growth factor receptor (EGFR) and mammalian target of rapamycin (mTOR). mTOR exists as part of two multiprotein complexes, mTOR complex 1 (mTORC1) and 2 (mTORC2). In GBs, mTORC1 inhibitors such as rapamycin have performed poorly in clinical trials, and in vitro protect GB cells from nutrient and oxygen deprivation. Next generation ATP-competitive mTOR inhibitors with affinity for both mTOR complexes have been developed, but data exploring their effects on GB metabolism are scarce. In this study, we compared the ATP-competitive mTORC1/2 inhibitors torin2, INK-128 and NVP-Bez235 to the allosteric mTORC1 inhibitor rapamycin under conditions that mimic the glioma microenvironment. In addition to inhibiting mTORC2 signaling, INK-128 and NVP-Bez235 more effectively blocked mTORC1 signaling and prompted a stronger cell growth inhibition, partly by inducing cell cycle arrest. However, under hypoxic and nutrient-poor conditions mTORC1/2 inhibitors displayed even stronger cytoprotective effects than rapamycin by reducing oxygen and glucose consumption. Thus, therapies that arrest proliferation and inhibit anabolic metabolism must be expected to improve energy homeostasis of tumor cells. These results mandate caution when treating physiologically or therapeutically induced hypoxic GBs with mTOR inhibitors.
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献