Different Synergy in Amyloids and Biologically Active Forms of Proteins

Author:

Fabian Piotr,Stapor Katarzyna,Banach Mateusz,Ptak-Kaczor Magdalena,Konieczny Leszek,Roterman IrenaORCID

Abstract

Protein structure is the result of the high synergy of all amino acids present in the protein. This synergy is the result of an overall strategy for adapting a specific protein structure. It is a compromise between two trends: The optimization of non-binding interactions and the directing of the folding process by an external force field, whose source is the water environment. The geometric parameters of the structural form of the polypeptide chain in the form of a local radius of curvature that is dependent on the orientation of adjacent peptide bond planes (result of the respective Phi and Psi rotation) allow for a comparative analysis of protein structures. Certain levels of their geometry are the criteria for comparison. In particular, they can be used to assess the differences between the structural form of biologically active proteins and their amyloid forms. On the other hand, the application of the fuzzy oil drop model allows the assessment of the role of amino acids in the construction of tertiary structure through their participation in the construction of a hydrophobic core. The combination of these two models—the geometric structure of the backbone and the determining of the participation in the construction of the tertiary structure that is applied for the comparative analysis of biologically active and amyloid forms—is presented.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3