Photocatalytic Degradation of Sulfamethoxazole and Enrofloxacin in Water Using Electrospun Composite Photocatalytic Membrane

Author:

Lin Xiaohu123ORCID,Fang Haifeng13,Wang Libing13,Sun Danyan2,Zhao Gang24,Xu Jingcheng2

Affiliation:

1. PowerChina Huadong Engineering Corporation Limited, Hangzhou 311122, China

2. College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China

3. Huadong Eco-Environmental Engineering Research Institute of Zhejiang Province, Hangzhou 311122, China

4. Shanghai Urban Construction Design & Research Institute (Group) Co., Ltd., Shanghai 200125, China

Abstract

Photocatalysis has emerged as a promising technology for the removal of emerging contaminants such as antibiotics from water. Fixing photocatalytic materials on polymers to prepare applicable membranes is a feasible method for applying photocatalysis. This study explored the preparation of composite PAN-TiO2 and PAN-TiO2-rGO (PAN-rGTi) photocatalytic membranes by combining TiO2, TiO2-reduced graphene oxide (rGO) and polyacrylonitrile (PAN) using electrospinning. Characterization through SEM and EDS analysis confirms the composite membrane’s microstructure and elemental composition. The electrospun PAN-TiO2 and PAN-rGTi composite membranes exhibit a stable and efficient photocatalytic performance in degrading sulfamethoxazole (SMX) and enrofloxacin (ENR), two typical antibiotics commonly found in water bodies. Photocatalytic degradation experiments under simulated solar light reveal the superior performance of the composite photocatalytic membranes compared to PAN alone, with a notable increase in the reaction rate constants of PAN-TiO2 (1.8 to 2.2 times for SMX and 3.2 to 4.0 times for ENR) and even higher enhancements for PAN-rGTi (2.8 to 3.0 times for SMX and 5.4 to 6.5 times for ENR) compared to PAN alone. Despite minor decreases (from 97.6% to 90.4%) in activity over five cycles, the photocatalytic composite membranes remain effective, showcasing their stability and recyclability. This study highlights the potential application of PAN-TiO2 and PAN-rGTi composite membranes as sustainable and effective materials for removing emerging contaminants from water. Further exploration should focus on optimizing materials for specific emerging contaminants and improving their application feasibility for wastewater and water treatment and water purification in water bodies.

Funder

China Scholarship Council

PowerChina Huadong Engineering Corporation Limited

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3