Growth Quakes and Stasis Using Iterations of Inflating Complex Random Matrices

Author:

Benisty Henri12ORCID

Affiliation:

1. Laboratoire Charles Fabry, IOGS, Université Paris-Saclay, 2 Av. Fresnel, 91120 Palaiseau, France

2. LIED Laboratory, Université Paris Cité, 5 rue Marie-Andrée Lagroua Weill-Hallé, 75205 Paris, France

Abstract

I extend to the case of complex matrices, rather than the case of real matrices as in a prior study, a method of iterating the operation of an “inflating random matrix” onto a state vector to describe complex growing systems. I show that the process also describes in this complex case a punctuated growth with quakes and stasis. I assess that under one such inflation step, the vector will shift to a really different one (quakes) only if the inflated matrix has sufficiently dominant new eigenvectors. The vector shall prefer stasis (a similar vector) otherwise, similar to the real-valued matrices discussed in a prior study. Specifically, in order to extend the model relevance, I assess that under various update schemes of the system’s representative vector, the bimodal distribution of the changes of the dominant eigenvalue remains the core concept. Overall, I contend that the punctuations may appropriately address the issue of growth in systems combining a large weight of history and some sudden quake occurrences, such as economic systems or ecological systems, with the advantage that unpaired complex eigenvalues provide more degrees of freedom to suit real systems. Furthermore, random matrices could be the right meeting point for exerting thermodynamic analogies in a reasonably agnostic manner in such rich contexts, taking into account the profusion of items (individuals, species, goods, etc.) and their networked, tangled interactions 50+ years after their seminal use in R.M. May’s famous “interaction induced instability” paradigm. Finally, I suggest that non-ergodic tools could be further applied for tracking the specifics of large-scale evolution paths and for checking the model’s relevance to the domains mentioned above.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3