Predicted Structure and Functions of the Prototypic Alphaherpesvirus Herpes Simplex Virus Type-1 UL37 Tegument Protein

Author:

Collantes Therese Marie A.ORCID,Clark Carolyn M.,Musarrat Farhana,Jambunathan Nithya,Jois Seetharama,Kousoulas Konstantin G.

Abstract

The alphaherpesvirus UL37 tegument protein is a highly conserved, multi-functional protein. Mutagenesis analysis delineated the UL37 domains necessary for retrograde transport and viral replication. Specifically, the amino-terminal 480 amino acids are dispensable for virus replication in epithelial cell culture, but it is unknown whether this amino-terminal deletion affects UL37 structure and intracellular transport in epithelial cells and neurons. To investigate the structure and function of UL37, we utilized multiple computational approaches to predict and characterize the secondary and tertiary structure and other functional features. The structure of HSV-1 UL37 and Δ481N were deduced using publicly available predictive algorithms. The predicted model of HSV-1 UL37 is a stable, multi-functional, globular monomer, rich in alpha helices, with unfolded regions within the linker and the C-tail domains. The highly flexible C-tail contains predicted binding sites to the dynein intermediate chain, as well as DNA and RNA. Predicted interactions with the cytoplasmic surface of the lipid membrane suggest UL37 is a peripheral membrane protein. The Δ481N truncation did not alter the predicted structure of the UL37 C-terminus protein and its predicted interaction with dynein. We validated these models by examining the replication kinetics and transport of the Δ481N virus toward the nuclei of infected epithelial and neuronal cells. The Δ481N virus had substantial defects in virus spread; however, it exhibited no apparent defects in virus entry and intracellular transport. Using computational analyses, we identified several key features of UL37, particularly the flexible unstructured tail; we then demonstrated that the UL37 C-terminus alone is sufficient to effectively transport the virus towards the nucleus of infected epithelial and neuronal cells.

Publisher

MDPI AG

Subject

Virology,Infectious Diseases

Reference86 articles.

1. Fields Virology;Fields,2013

2. Fenner’s Veterinary Virology;Maclachlan,2017

3. Bovine herpesvirus-1 vaccines;van Drunen Littel-van den Hurk;Immunol. Cell Biol.,1993

4. Review of Poultry Recombinant Vector Vaccines

5. Vaccines against pseudorabies virus (PrV)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3