Multi-Response Optimization of Nanofluid-Based I. C. Engine Cooling System Using Fuzzy PIV Method

Author:

Seraj Mohd,Yahya Syed MohdORCID,Badruddin Irfan AnjumORCID,Anqi Ali E.,Asjad Mohammad,Khan Zahid A.

Abstract

Effective cooling of the internal combustion (I. C.) engines is of utmost importance for their improved performance. Automotive heat exchangers used as radiator with low efficiency in the industry may pose a serious threat to the engines. Thus, thermal scientists and engineers are always looking for modern methods to boost the heat extraction from the engine. A novel idea of using nanofluids for engine cooling has been in the news for some time now, as they have huge potential because of better thermal properties, strength, compactness, etc. Nanofluids are expected to replace the conventional fluids such as ethylene glycol, propylene glycol, water etc. due to performance and environmental concerns. Overall performance of the engine cooling system depends on several input parameters and therefore they need to be optimised to achieve an optimum performance. This study is focussed on developing a nanofluid engine cooling system (NFECS) where Al2O3 nanoparticles mixed with ethylene glycol (EG) and water is used as nanofluid. Furthermore, it also explores the effect of four important input parameters of the NFECS i.e., nanofluid inlet temperature, engine load, nanofluid flow rate, and nanoparticle concentration on its five attributes (output responses) viz thermal conductivity of the nanofluid, heat transfer coefficient, viscosity of the nanofluid, engine pumping power required to pump the desired amount of the nanofluid, and stability of the nanofluid. Taguchi’s L18 orthogonal array is used as the design of experiment to collect experimental data. Weighting factors are determined for output responses using the Triangular fuzzy numbers (TFN) and optimal setting of the input parameters is obtained using a novel fuzzy proximity index value (FPIV) method.

Funder

King Khalid University

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3