Modeling and Simulation of Reaction and Fractionation Systems for the Industrial Residue Hydrotreating Process

Author:

Wang Yalin,Shang Dandan,Yuan XiaofengORCID,Xue YongfeiORCID,Sun Jiazhou

Abstract

The residue hydrotreating process plays a significant role in the petroleum refining industry. In this process, modeling and simulation have critical importance for process development, control, and optimization. However, there is a lack of relevant reports of plant scale due to complexity in characterizing feedstock and determining reaction mechanisms. In this paper, reaction and fractionation models are constructed and simulated for a real-life industrial residue hydrotreating process based on Aspen HYSYS/Refining. Considering the heavier and inferior residue, analytical characterization is carried out for feedstock characterization based on laboratory analysis data. Moreover, two reactor models with parallel structures are proposed to implement the intricate reaction network, namely, a hydrocracker reactor and a plug flow reactor. The former simulates lighter petroleum hydrotreating based on the built-in reaction network. The latter emulates the conversion of a peculiar, heavier resin and asphaltene, using a six-lump model, which expands the scope of the feedstock and improves the accuracy of the model. To obtain a realistic simulation of fractionation, the database-based delumping method is adopted to model it with proper pseudo-components. The simulation results, including temperature rise, hydrogen consumption, temperature distribution, product yield, product properties, indicate that the model is capable of reflecting the realistic process accurately.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference38 articles.

1. Petroleum AsphalteneProperties, Characterization, and Issues

2. BP Statistical Review of World Energy;Bob,2019

3. Heavy Crude Oils: From Geology to Upgrading: An Overview;Huc,2010

4. Catalysis by Transition Metal Sulphides: From Molecular Theory to Industrial Application;Pascal,2013

5. Distinct and Quantitative Validation Method for Predictive Process Modelling in Preparative Chromatography of Synthetic and Bio-Based Feed Mixtures Following a Quality-by-Design (QbD) Approach

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3