Author:
Cao Yan,Wu Qi,Jin Zhijun,Zhu Rukai
Abstract
In order to explore the development characteristics and influencing factors of microscale pores in lacustrine organic-rich muddy shale, this study selected five shale samples with different mineral compositions from the Qingshankou Formation in the Songliao Basin. The oil content and mineralogy of the shale samples were obtained by pyrolysis and X-ray diffraction analysis, respectively, while the porosity of the samples was computed by micro-CT imaging. Next, based on the CT images, the permeability of each sample was calculated by the Avizo software. Results showed that the continuous porosity of Qingshankou shale in the Songliao Basin was found between 0.84 and 7.79% (average 4.76%), the total porosity between 1.87 and 12.03% (average 8.28%), and the absolute permeability was calculated between 0.061 and 2.284 × 10−3 μm2. The total porosity of the samples has a good positive correlation with the continuous porosity and permeability. This means higher values of total porosity suggested better continuous porosity and permeability. Both total porosity and continuous porosity are positively correlated with the content of clay minerals. Moreover, the oil content of the samples (the S1 peak from programmed pyrolysis) exhibits a good positive correlation with the total porosity, continuous porosity, permeability, and clay mineral content. Therefore, pores that are developed by clay minerals are the main storage space for oil and flow conduits as well. Clay minerals were found to be the main controlling factor in the porosity, permeability, and the amount of oil content in the pores in the study area.
Funder
National Natural Science Foundation of China
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献