Abstract
A special dual-tube reactor-dual fluidized bed reactor (DFBR), including an external heat exchanger (EHE) and a bypass, was designed to solve the problems that the waste heat of the hot fluid cannot be fully utilized and the reaction temperature cannot be accurately adjusted. Two connection schemes of DFBR and EHE with their thermodynamic equilibrium models and algorithms were proposed, and the optimal scheme was obtained by comparing the outlet temperature and thermal load. The results of the thermodynamic and operating characteristics of the optimal scheme showed that the hot fluid and the cold fluid had positive and negative effects on the heat transfer process, respectively. Increasing the cold fluid mass flow rate in the main stream can enhance the thermal load of the system and increasing the cold fluid mass flow rate in the bypass helped to increase the thermal load of DFBR, even exceeding that of EHE. Adding a bypass can adjust temperature precisely and increasing the inlet temperature can more effectively increase the adjustment range of the reaction zone temperature. The experimental results showed that introducing a bypass can significantly reduce the calculation deviation (12.8%), which decreased with the increasing temperature.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction