Abstract
Electronic health records (EHRs) can be used to make critical decisions, to study the effects of treatments, and to detect hidden patterns in patient histories. In this paper, we present a framework to identify and analyze EHR-data-driven tasks and activities in the context of interactive visualization tools (IVTs)—that is, all the activities, sub-activities, tasks, and sub-tasks that are and can be supported by EHR-based IVTs. A systematic literature survey was conducted to collect the research papers that describe the design, implementation, and/or evaluation of EHR-based IVTs that support clinical decision-making. Databases included PubMed, the ACM Digital Library, the IEEE Library, and Google Scholar. These sources were supplemented by gray literature searching and reference list reviews. Of the 946 initially identified articles, the survey analyzes 19 IVTs described in 24 articles that met the final selection criteria. The survey includes an overview of the goal of each IVT, a brief description of its visualization, and an analysis of how sub-activities, tasks, and sub-tasks blend and combine to accomplish the tool’s main higher-level activities of interpreting, predicting, and monitoring. Our proposed framework shows the gaps in support of higher-level activities supported by existing IVTs. It appears that almost all existing IVTs focus on the activity of interpreting, while only a few of them support predicting and monitoring—this despite the importance of these activities in assisting users in finding patients that are at high risk and tracking patients’ status after treatment.
Subject
Computer Networks and Communications,Computer Science Applications,Human-Computer Interaction,Neuroscience (miscellaneous)
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献