A Possibilistic Kalman Filter for the Reduction of the Final Measurement Uncertainty, in Presence of Unknown Systematic Errors

Author:

Jetti Harsha Vardhana,Salicone SimonaORCID

Abstract

A Kalman filter is a concept that has been in existence for decades now and it is widely used in numerous areas. It provides a prediction of the system states as well as the uncertainty associated to it. The original Kalman filter can not propagate uncertainty in a correct way when the variables are not distributed normally or when there is a correlation in the measurements or when there is a systematic error in the measurements. For these reasons, there have been numerous variations of the original Kalman filter, most of them mathematically based (like the original one) on the theory of probability. Some of the variations indeed introduce some improvements, but without being completely successful. To deal with these problems, more recently, Kalman filters have also been defined using random-fuzzy variables (RFVs). These filters are capable of also propagating distributions that are not normal and propagating systematic contributions to uncertainty, thus providing the overall measurement uncertainty associated to the state predictions. In this paper, the authors make another step forward, by defining a possibilistic Kalman filter using random-fuzzy variables which not only considers and propagates both random and systematic contributions to uncertainty, but also reduces the overall uncertainty associated to the state predictions by compensating for the unknown residual systematic contributions.

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3