Systematic Distortion Factor and Unrecognized Source of Uncertainties in Nuclear Data Measurements and Evaluations

Author:

Kornilov Nikolay V.,Pronyaev Vladimir G.,Grimes Steven M.

Abstract

Each experiment provides new information about the value of some physical quantity. However, not only measured values but also the uncertainties assigned to them are an important part of the results. The metrological guides provide recommendations for the presentation of the uncertainties of the measurement results: statistics and systematic components of the uncertainties should be explained, estimated, and presented separately as the results of the measurements. The experimental set-ups, the models of experiments for the derivation of physical values from primary measured quantities, are the product of human activity, making it a rather subjective field. The Systematic Distortion Factor (SDF) may exist in any experiment. It leads to the bias of the measured value from an unknown “true” value. The SDF appears as a real physical effect if it is not removed with additional measurements or analysis. For a set of measured data with the best evaluated true value, their differences beyond their uncertainties can be explained by the presence of Unrecognized Source of Uncertainties (USU) in these data. We can link the presence of USU in the data with the presence of SDF in the results of measurements. The paper demonstrates the existence of SDF in Prompt Fission Neutron Spectra (PFNS) measurements, measurements of fission cross sections, and measurements of Maxwellian spectrum averaged neutron capture cross sections for astrophysical applications. The paper discusses introducing and accounting for the USU in the data evaluation in cases when SDF cannot be eliminated. As an example, the model case of 238U(n,f)/235U(n,f) cross section ratio evaluation is demonstrated.

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3