Economical Experimental Device for Evaluating Thermal Conductivity in Construction Materials under Limited Research Funding

Author:

Fakra Damien Ali Hamada12ORCID,Rakotosaona Rijalalaina2,Ratsimba Marie Hanitriniaina2,Randrianarison Mino Patricia2,Benelmir Riad1

Affiliation:

1. Faculty of Sciences and Technologies of Nancy, University of Lorraine, Campus Aiguillettes, BP 70239, 54506 Vandoeuvre-Les-Nancy, France

2. Higher Polytechnic School of Antananarivo, University of Antananarivo, Sis Ambohitsaina BP 1500, Antananarivo 101, Madagascar

Abstract

African scientific research faces formidable challenges, particularly with limited access to state-of-the-art measurement instruments. The high cost associated with these devices presents a significant barrier for regional research laboratories, impeding their ability to conduct sophisticated experiments and gather precise data. This predicament not only hampers the individual laboratories but also has broader implications for the African scientific community and the advancement of knowledge in developing nations—the financial cost barrier considerably impacts the research quality of these laboratories. Reflection on technical and economical solutions needs to be quickly found to help these countries advance their research. In civil engineering, the thermal conductivity property is the most important measurement for characterizing heat transfer in construction materials. Existing devices (i.e., conductometers) in a laboratory are expensive (approximately EUR 30,000) and unavailable for some African laboratories. This study proposes a new and affordable device to evaluate thermal conductivity in construction materials. The method involves establishing a thermal flux between a heat source (from the Joule effect provided by steel wool where a current is circulating) and a cold source (generated by ice cubes) under steady-state conditions. The development of the cylindrical prototype is based on the comparative flux-meter method outlined in the measuring protocol of the ASTM E1225 standard document. Experiments were conducted on four distinct materials (polystyrene, wood, agglomerated wood, and rigid foam). The results indicate a correct correlation between the experimental values obtained from the newly developed prototype and the reference values found in the literature. For example, concerning the experimental polystyrene study, the detailed case analysis reveals a good correlation, with a deviation of only 4.88%. The percent error found falls within the acceptable range indicated by the standard recommendations of the ASTM E1225 standard, i.e., within 5% acceptable error.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3