Real Driving Emissions—Conception of a Data-Driven Calibration Methodology for Hybrid Powertrains Combining Statistical Analysis and Virtual Calibration Platforms

Author:

Krysmon SaschaORCID,Dorscheidt FrankORCID,Claßen JohannesORCID,Düzgün Marc,Pischinger Stefan

Abstract

The combination of different propulsion and energy storage systems for hybrid vehicles is changing the focus in the field of powertrain calibration. Shorter time-to-market as well as stricter legal requirements regarding the validation of Real Driving Emissions (RDE) require the adaptation of current procedures and the implementation of new technologies in the powertrain development process. In order to achieve highest efficiencies and lowest pollutant emissions at the same time, the layout and calibration of the control strategies for the powertrain and the exhaust gas aftertreatment system must be precisely matched. An optimal operating strategy must take into account possible trade-offs in fuel consumption and emission levels, both under highly dynamic engine operation and under extended environmental operating conditions. To achieve this with a high degree of statistical certainty, the combination of advanced methods and the use of virtual test benches offers significant potential. An approach for such a combination is presented in this paper. Together with a Hardware-in-the-Loop (HiL) test bench, the novel methodology enables a targeted calibration process, specifically designed to address calibration challenges of hybridized powertrains. Virtual tests executed on a HiL test bench are used to efficiently generate data characterizing the behavior of the system under various conditions with a statistically based evaluation identifying white spots in measurement data, used for calibration and emission validation. In addition, critical sequences are identified in terms of emission intensity, fuel consumption or component conditions. Dedicated test scenarios are generated and applied on the HiL test bench, which take into account the state of the system and are adjusted depending on it. The example of one emission calibration use case is used to illustrate the benefits of using a HiL platform, which achieves approximately 20% reduction in calibration time by only showing differences of less than 2% for fuel consumption and emission levels compared to real vehicle tests.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference79 articles.

1. Delphi Technologies Worldwide Emissions Standards: Passenger Cars and Light Duty Vehicleshttps://www.delphi.com/sites/default/files/2020-04/DELPHI%20booklet%20emission%20passenger%20cars%202020%20online%20complet.pdf

2. Gasoline Particulate Filter Characterization Focusing on the Filtration Efficiency of Nano-Particulates Down to 10 nm

3. Trend of vehicle emission levels until 2020 – Prognosis based on current vehicle measurements and future emission legislation

4. European Parliament and Council Commission Regulation (EU) 2018/1832https://eur-lex.europa.eu/legal-content/GA/TXT/?uri=CELEX:32018R1832

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3