Abstract
To protect a photovoltaic module from the hot spot effect more efficiently, an AC (alternating current) module that contains a module-level MPPT (maximum power point tracking) has been put forward. In this paper, operation states of shadowed solar cells and relevant bypass diodes were studied through MATLAB/Simulink tools, and a commercial PV module was used to reveal the temperature change when working at different LMPP (local maximum power point). Experiment results show that bypass diode can reduce power loss for the AC module to some extent but has a limited effect on protecting the AC module from the hot spot effect. Instead, it is more likely to form a local hot spot when the bypass diode turns on, and the worst shading condition for the AC module with bypass diode is about 46.5% during work states.
Funder
Ministry of Science and Technology of the People's Republic of China
Chinese Academy of Sciences
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献