Comparative Analysis of High-Voltage Power Line Models for Determining Short-Circuit Currents in Towers Earthing Systems

Author:

Tarko RafałORCID,Gajdzica JakubORCID,Nowak WiesławORCID,Szpyra WaldemarORCID

Abstract

The article deals with the problems of single-phase short-circuit current distribution in overhead power lines. Short-circuit disturbances cause many negative phenomena in power networks. Since experimental studies of short-circuits in real networks are practically impossible to perform, these effects can be evaluated only theoretically, based on short-circuit current calculations with the use of appropriate mathematical models. Although short-circuit modeling is considered to be one of the simplest power system calculations, the exact mathematical description of the phenomena occurring at short-circuits is complex. Simplified normative methods are often used for short-circuit current calculations; however, this does not give ground for a thorough analysis of short-circuit current distribution in power lines. The distributions are analyzed using power line models with different degrees of complexity in line with the assumptions made for a given model. The paper presents the problem of current distribution analysis in high-voltage overhead lines for single-phase faults to the tower structures. Simulation studies were conducted on the models developed for the calculation of short-circuit currents in the high-voltage power line earthing. The objective of the analysis was to assess the validity of simplification assumptions followed by practical recommendations on the applicability of the models.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference24 articles.

1. Power Systems Modelling and Fault Analysis: Theory and Practice;Tleis,2008

2. Power Systems Handbook. Vol. 1, Short-Circuits in AC and DC Systems: ANSI, IEEE, and IEC Standards;Das,2018

3. Ground Potential Rise at Overhead ac Transmission Line Structures during Power Frequency Faults,2017

4. Factors Affecting Ground Potential Rise and Fault Currents Along Transmission Lines With Multigrounded Shield Wires

5. Ground potential rise of multi-grounded neutral and shield wires in joint systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3