Assessment of Ground Regeneration around Borehole Heat Exchangers between Heating Seasons in Cold Climates: A Case Study in Bialystok (NE, Poland)

Author:

Piotrowska-Woroniak JoannaORCID

Abstract

Based on the experimental studies, the process of ground regeneration around the borehole loaded with brine-water heat pumps working exclusively for heating purposes in the period of four consecutive heating seasons in a cold climate was presented. The research was conducted in north-eastern Poland. The aim of the work is to verify the phenomenon of thermal ground regeneration in the period between heating seasons on the basis of the recorded data and to check whether the ground is able to regenerate itself and at what rate. It was noticed that the ground does not fully regenerate, especially during heating seasons with lower temperatures. In the analyzed period, from 22 September 2016 to 12 October 2020, the ground probably cooled irreversibly by 1.5 °C. In order to illustrate and evaluate the speed of changes in the ground, the one’s profile with an undisturbed temperature field was presented for each month of the year. The presented results can be a very important source of information for the analysis of geothermal conditions occurring in the ground. They can be used to verify mathematical models and conduct long-term simulations that allow us to see the complexity of the processes taking place in the ground.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference97 articles.

1. European Parliament Resolution of 15 January 2020 on the European Green Deal 2019, 2956 (RSP) https://www.europarl.europa.eu/doceo/document/TA-9-2020-0005_EN.html

2. European Parliament Resolution of 14 March 2019 on Climate Change-A European Strategic Long-Term Vision for a Prosperous, Modern, Competitive and Climate Neutral Economy in Accordance with the Paris Agreement 2019, 2582(RSP) https://www.europarl.europa.eu/doceo/document/TA-8-2019-0217_EN.html

3. Global Status Report for Buildings and Construction 2019,2019

4. 2020 Global Status Report for Buildings and Construction: Towards a Zero-Emission, Efficient and Resilient Buildings and Construction Sector,2020

5. An efficient hybrid model for thermal analysis of deep borehole heat exchangers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3