Abstract
This paper proposes a method for the optimal placement of phasor measurement units (PMUs) for the complete observability of a power system based on the degree of the neighbourhood vertices. A three-stage algorithm is used to determine the minimum number of PMUs needed to make the system observable. The key objective of the proposed methodology is to minimize the total number of PMUs to completely observe a power system network and thereby minimize the installation cost. In addition, the proposed technique also focuses on improving the measurement redundancy. The proposed method is applied on standard IEEE 14-bus, IEEE 24-bus, IEEE 30-bus, IEEE 57-bus and IEEE 118-bus test systems and a hybrid AC/DC microgrid test system. The results obtained are compared with already existing methods in terms of the Bus Observability Index (BOI) and System Observability Redundancy Index (SORI). The results show that the proposed method is simple to implement and provides better placement locations for effective monitoring compared to other existing methods.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Reference41 articles.
1. IEEE Guide for Synchronization, Calibration, Testing, and Installation of Phasor Measurement Units (PMUs) for Power System Protection and Control IEEE Power and ENERGY Society,2013
2. Power System State Estimation: Theory and Implementation;Abur,2004
3. Sensitivity Constrained PMU Placement for Complete Observability of Power Systems
4. Phasor Measurement Unit (PMU) Implementation and Applications;Zhang,2007
5. Optimal Multistage Scheduling of PMU Placement: An ILP Approach
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献