Utilization of By-Products and Wastes as Supplementary Cementitious Materials in Structural Mortar for Sustainable Construction

Author:

Sakir ShamirORCID,Raman Sudharshan N.ORCID,Safiuddin Md.,Kaish A. B. M. AmrulORCID,Mutalib Azrul A.

Abstract

Rapid growth in industrial development has raised the concern of proper disposal of the by-products generated in industries. Many of them may cause serious pollution to the air, land, and water if dumped in open landfills. Agricultural and municipal wastes also cause environmental issues if not managed properly. Besides, minimizing the carbon footprint has become a priority in every industry to slow down global warming and climate change effects. The use of supplementary cementitious materials (SCMs) obtained from agricultural, industrial, municipal, and natural sources can decrease a significant amount of fossil fuel burning by reducing cement production and contribute to proper waste management. Also, SCMs can enhance desirable material properties like flowability, strength, and durability. Such materials may play a big role to meet the need of modern time for resilient construction. The effective application of SCMs in cement-based materials requires a clear understanding of their physical and chemical characteristics. Researchers studied how the flowability, strength, and durability properties of structural mortar change with the replacement of cement with different SCMs. Various experiments were conducted to examine the behavior of structural mortar in extreme conditions (e.g., high temperature). Many scholars have attempted to improve its performance with various treatment techniques. This article is an attempt to bring all the major findings of the recent relevant studies together, identify research gaps in the current state of knowledge on the utilization of SCMs in structural mortar, and give several recommendations for further study. The available results from recent studies have been reviewed, analyzed, and summarized in this article. A collection of the updated experimental findings will encourage and ease the use of various by-products and wastes as SCMs in structural mortar for sustainable construction.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3