Concrete Construction: How to Explore Environmental and Economic Sustainability in Cold Climates

Author:

Chen Shiwei,Lu Weizhuo,Olofsson ThomasORCID,Dehghanimohammadabadi MohammadORCID,Emborg Mats,Nilimaa JonnyORCID,Wang Yaowu,Feng Kailun

Abstract

In many cold regions around the world, such as northern China and the Nordic countries, on-site concrete is often cured in cold weather conditions. To protect the concrete from freezing or excessively long maturation during the hardening process, contractors use curing measures. Different types of curing measures have different effects on construction duration, cost, and greenhouse gas emissions. Thus, to maximize their sustainability and financial benefits, contractors need to select the appropriate curing measures against different weather conditions. However, there is still a lack of efficient decision support tools for selecting the optimal curing measures, considering the temperature conditions and effects on construction performance. Therefore, the aim of this study was to develop a Modeling-Automation-Decision Support (MADS) framework and tool to help contractors select curing measures to optimize performance in terms of duration, cost, and CO2 emissions under prevailing temperatures. The developed framework combines a concrete maturity analysis (CMA) tool, a discrete event simulation (DES), and a decision support module to select the best curing measures. The CMA tool calculates the duration of concrete curing needed to reach the required strength, based on the chosen curing measures and anticipated weather conditions. The DES simulates all construction activities to provide input for the CMA and uses the CMA results to evaluate construction performance. To analyze the effectiveness of the proposed framework, a software prototype was developed and tested on a case study in Sweden. The results show that the developed framework can efficiently propose solutions that significantly reduce curing duration and CO2 emissions.

Funder

the National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference54 articles.

1. Cement Sustainability Initiative (CSI)-Recycling Concrete,2009

2. Ready-Mixed Concrete Industry Statistics (2017),2017

3. Standard Specification for Cold Weather Concreting (ACI 306),2002

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3