Author:
Wang Yong,Xu Zhonggui,Wang Yinshen,Xie Jin
Abstract
In this paper, we report attenuation characteristics of aluminum nitride (AIN) film-based surface acoustic waves (SAWs) in liquids and their potential as liquid ethanol sensors. An AIN film-based SAW resonator was fabricated for liquid sensing application. The fabricated SAW device had a Rayleigh wave mode at a resonant frequency of 147.1 MHz and a low temperature coefficient of frequency (TCF) of −21.7 ppm/K. The signal attenuation in the transmission line of the SAW device was presented when ethanol (ETH) droplets and deionized water (DIW) with different concentrations and volume (0.2–1 µL) were dropped on the sensing area respectively. The attenuation of SAW as a function of time and liquid position was investigated. Residues left on the wave propagation path resulted in a frequency shift of the SAW device after liquid evaporation. For ETH, there was a 49 kHz frequency shift caused by a large amount of residues, while the frequency shift of DIW was not distinct, on account of a clean surface. The linear relationship between evaporation rate and ethanol concentration was demonstrated. The evaporation rate of ethanol droplets showed good consistency, and the evaporation time variation was less than 5% at each concentration level. Therefore, the proposed SAW device had great potentials to determine ethanol concentrations based on evaporation rate.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Science Fund of Creative Research Groups of National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献