The Impact of Quality Control Methods on Vegetation Monitoring Using MODIS FPAR Time Series

Author:

Yan Kai1ORCID,Zhang Xingjian2,Peng Rui3,Gao Si13,Liu Jinxiu2

Affiliation:

1. Innovation Research Center of Satellite Application (IRCSA), State Key Laboratory of Remote Sensing Science, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China

2. School of Information Engineering, China University of Geosciences, Beijing 100083, China

3. School of Land Science and Techniques, China University of Geosciences, Beijing 100083, China

Abstract

Monitoring vegetation dynamics (VD) is crucial for environmental protection, climate change research, and understanding carbon and water cycles. Remote sensing is an effective method for large-scale and long-term VD monitoring, but it faces challenges due to changing data uncertainties caused by various factors, including observational conditions. Previous studies have demonstrated the significance of implementing proper quality control (QC) of remote sensing data for accurate vegetation monitoring. However, the impact of different QC methods on VD results (magnitude and trend) has not been thoroughly studied. The fraction of absorbed photosynthetically active radiation (FPAR) characterizes the energy absorption capacity of the vegetation canopy and is widely used in VD monitoring. In this study, we investigated the effect of QC methods on vegetation monitoring using a 20-year MODIS FPAR time series. The results showed several important findings. Firstly, we observed that the Mixed-QC (no QC on the algorithm path) generally produced a lower average FPAR during the growing season compared to Main-QC (only using the main algorithm). Additionally, the Mixed-QC FPAR showed a very consistent interannual trend with the Main-QC FPAR over the period 2002–2021 (p < 0.05). Finally, we found that using only the main algorithm for QC generally reduced the trend magnitude (p < 0.1), particularly in forests. These results reveal differences in FPAR values between the two QC methods. However, the interannual FPAR trends demonstrate greater consistency. In conclusion, this study offers a case study on evaluating the influence of different QC methods on VD monitoring. It suggests that while different QC methods may result in different magnitudes of vegetation dynamics, their impact on the time series trends is limited.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3