VERDICT: A Language and Framework for Engineering Cyber Resilient and Safe System

Author:

Meng BaoluoORCID,Larraz Daniel,Siu Kit,Moitra Abha,Interrante John,Smith William,Paul Saswata,Prince Daniel,Herencia-Zapana Heber,Arif M. Fareed,Yahyazadeh Moosa,Tekken Valapil Vidhya,Durling Michael,Tinelli Cesare,Chowdhury Omar

Abstract

The ever-increasing complexity of cyber-physical systems is driving the need for assurance of critical infrastructure and embedded systems. However, traditional methods to secure cyber-physical systems—e.g., using cyber best practices, adapting mechanisms from information technology systems, and penetration testing followed by patching—are becoming ineffective. This paper describes, in detail, Verification Evidence and Resilient Design In anticipation of Cybersecurity Threats (VERDICT), a language and framework to address cyber resiliency. When we use the term resiliency, we mean hardening a system such that it anticipates and withstands attacks. VERDICT analyzes a system in the face of cyber threats and recommends design improvements that can be applied early in the system engineering process. This is done in two steps: (1) Analyzing at the system architectural level, with respect to cyber and safety requirements and (2) by analyzing at the component behavioral level, with respect to a set of cyber-resiliency properties. The framework consists of three parts: (1) Model-Based Architectural Analysis and Synthesis (MBAAS); (2) Assurance Case Fragments Generation (ACFG); and (3) Cyber Resiliency Verifier (CRV). The VERDICT language is an Architecture Analysis and Design Language (AADL) annex for modeling the safety and security aspects of a system’s architecture. MBAAS performs probabilistic analyses, suggests defenses to mitigate attacks, and generates attack-defense trees and fault trees as evidence of resiliency and safety. It can also synthesize optimal defense solutions—with respect to implementation costs. In addition, ACFG assembles MBAAS evidence into goal structuring notation for certification purposes. CRV analyzes behavioral aspects of the system (i.e., the design model)—modeled using the Assume-Guarantee Reasoning Environment (AGREE) annex and checked against cyber resiliency properties using the Kind 2 model checker. When a property is proved or disproved, a minimal set of vital system components responsible for the proof/disproof are identified. CRV also provides rich and localized diagnostics so the user can quickly identify problems and fix the design model. This paper describes the VERDICT language and each part of the framework in detail and includes a case study to demonstrate the effectiveness of VERDICT—in this case, a delivery drone.

Funder

Defense Advanced Research Projects Agency

Publisher

MDPI AG

Subject

Information Systems and Management,Computer Networks and Communications,Modeling and Simulation,Control and Systems Engineering,Software

Reference54 articles.

1. Common Vulnerabilities and Exposureshttps://cve.mitre.org/

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3