Enhanced Cycling Stability through Erbium Doping of LiMn2O4 Cathode Material Synthesized by Sol-Gel Technique

Author:

Zhao Hongyuan,Bai Xiuzhi,Wang Jing,Li Dongdong,Li Bo,Wang Yashuang,Dong Li,Liu Binbin,Komarneni Sridhar

Abstract

In this work, LiMn2−xErxO4 (x ≤ 0.05) samples were obtained by sol-gel processing with erbium nitrate as the erbium source. XRD measurements showed that the Er-doping had no substantial impact on the crystalline structure of the sample. The optimal LiMn1.97Er0.03O4 sample exhibited an intrinsic spinel structure and a narrow particle size distribution. The introduction of Er3+ ions reduced the content of Mn3+ ions, which seemed to efficiently suppress the Jahn–Teller distortion. Moreover, the decreased lattice parameters suggested that a more stable spinel structure was obtained, because the Er3+ ions in a ErO6 octahedra have stronger bonding energy (615 kJ/mol) than that of the Mn3+ ions in a MnO6 octahedra (402 kJ/mol). The present results suggest that the excellent cycling life of the optimal LiMn1.97Er0.03O4 sample is because of the inhibition of the Jahn-Teller distortion and the improvement of the structural stability. When cycled at 0.5 C, the optimal LiMn1.97Er0.03O4 sample exhibited a high initial capacity of 130.2 mAh g−1 with an excellent retention of 95.2% after 100 cycles. More significantly, this sample showed 83.1 mAh g−1 at 10 C, while the undoped sample showed a much lower capacity. Additionally, when cycled at 55 °C, a satisfactory retention of 91.4% could be achieved at 0.5 C after 100 cycles with a first reversible capacity of 130.1 mAh g−1.

Funder

Henan Institute of Science and Technology

Education Department of Henan Province

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3