Experimental and Numerical Assessment of Temperature Field and Analysis of Microstructure and Mechanical Properties of Low Power Laser Annealed Welded Joints

Author:

Kumar Uday,Gope D.,Srivastava J.,Chattopadhyaya Somnath,Das A.,Krolczyk Grzegorz

Abstract

In this present work, laser welding experiments were carried out on 1 mm thin Ti6Al4V sheets using a low power Nd-YAG laser machine without using any filler wire and without edge preparation of welding specimens. The influence of different major process control parameters such as welding speed and power on the yield parameters like temperature field, weld bead geometry, microstructure, and mechanical properties are critically investigated. Experimental results are compared in detail with the simulated results obtained using a commercial 3D finite element model. In the simulation model, temperature-dependent thermal and mechanical properties of plates were considered. The temperature readings were recorded with the aid of K type thermocouples. Forced convection has been assumed near weld zone region because of the movement of the shielding gas. Appreciable agreement is found between the experimental and the simulated temperature fields in most of the cases with few exceptions. These deviations on few occasions may be due to the presence of uncertainties inherently present in the experimental domain and uncertainties in the subsequent temperature sensing techniques by the thermocouples. In addition, annealing has been done at 950 °C, 980 °C, and 1010 °C for one selected parameter (192 W, 6 mm/s). The tensile strength of the samples annealed at 980 °C has been found to be 1048 MPa and it is 3% to 4% higher than that of the usual welded samples.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3