Buckling Analysis of Vacancy-Defected Graphene Sheets by the Stochastic Finite Element Method

Author:

Chu Liu,Shi Jiajia,Ben Shujun

Abstract

Vacancy defects are unavoidable in graphene sheets, and the random distribution of vacancy defects has a significant influence on the mechanical properties of graphene. This leads to a crucial issue in the research on nanomaterials. Previous methods, including the molecular dynamics theory and the continuous medium mechanics, have limitations in solving this problem. In this study, the Monte Carlo-based finite element method, one of the stochastic finite element methods, is proposed and simulated to analyze the buckling behavior of vacancy-defected graphene. The critical buckling stress of vacancy-defected graphene sheets deviated within a certain range. The histogram and regression graphs of the probability density distribution are also presented. Strengthening effects on the mechanical properties by vacancy defects were detected. For high-order buckling modes, the regularity and geometrical symmetry in the displacement of graphene were damaged because of a large amount of randomly dispersed vacancy defects.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bending and twisting behavior of multilayer graphene;Modern Physics Letters B;2023-11-28

2. Effect of size and vacancy defects on buckling properties of arsenene nanosheets;Philosophical Magazine Letters;2022-11-07

3. On uncertainty modeling of thermoelastic vibration for porous nanosandwich beams with gradient core based on nonlocal higher order beam model;Waves in Random and Complex Media;2022-10-20

4. Preparation of Material Representation;Multiscale Modelling and Optimisation of Materials and Structures;2022-05-27

5. Stochastic thermo-elastic vibration characteristics of functionally graded porous nano-beams using first-order perturbation-based nonlocal finite element model;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2022-05-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3