Elastic Fibre Prestressing Mechanics within a Polymeric Matrix Composite

Author:

Chen Hui,Yu Folian,Wang BingORCID,Zhao Chenmin,Chen Xiayu,Nsengiyumva WalterORCID,Zhong Shuncong

Abstract

The elastic fibre prestressing (EFP) technique has been developed to balance the thermal residual stress generated during curing of a polymeric composite. The continuous fibre reinforcements are prestressed and then impregnated into a polymeric matrix, where the prestress load is only removed after the resin is fully cured in order to produce an elastically prestressed polymeric matrix composite (EPPMC). Although the EFP is active in improving the static mechanical performance of a composite, its mechanics on dynamic mechanical performance and viscoelasticity of a composite is still limited. Here, we established a theoretical model in order to decouple the EFP principle, aiming to better analyse the underlying mechanics. A bespoke fibre prestressing rig was then developed to apply tension on a unidirectional carbon-fibre-reinforced epoxy prepreg to produce EPPMC samples with various EFP levels. The effects of EFP were then investigated by carrying out both static and dynamic mechanical testing, as well as the viscoelastic creep performance. It was found that there is an optimal level of EFP in order to maximise the prestress benefits, whilst the EFP is detrimental to the fibre/matrix interface. The EFP mechanisms are then proposed based on these observations to reveal the in-plane stress evolutions within a polymeric composite.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3