Preparation and Properties of Bimetallic Chitosan Spherical Microgels

Author:

Lončarević Andrea1ORCID,Ostojić Karla2,Urlić Inga2ORCID,Rogina Anamarija1ORCID

Affiliation:

1. Faculty of Chemical Engineering and Technology, University of Zagreb, Trg Marka Marulića 19, HR-10000 Zagreb, Croatia

2. Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia

Abstract

The aim of this work was to prepare bimetallic chitosan microgels with high sphericity and investigate the influences of metal-ion type and content on the size, morphology, swelling, degradation and biological properties of microgels. Amino and hydroxyl groups of chitosan (deacetylation degree, DD, of 83.2% and 96.9%) served as ligands in the Cu2+–Zn2+/chitosan complexes with various contents of cupric and zinc ions. The electrohydrodynamic atomization process was used to produce highly spherical microgels with a narrow size distribution and with surface morphology changing from wrinkled to smooth by increasing Cu2+ ions’ quantity in bimetallic systems for both used chitosans. The size of the bimetallic chitosan particles was estimated to be between 60 and 110 µm for both used chitosans, and FTIR spectroscopy indicated the formation of complexes through physical interactions between the chitosans’ functional groups and metal ions. The swelling capacity of bimetallic chitosan particles decreases as the DD and copper (II) ion content increase as a result of stronger complexation with respect to zinc (II) ions. Bimetallic chitosan microgels showed good stability during four weeks of enzymatic degradation, and bimetallic systems with smaller amounts of Cu2+ ions showed good cytocompatibility for both used chitosans.

Funder

Croatian Science Foundation

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Recent developments in chitosan based microgels and their hybrids;International Journal of Biological Macromolecules;2024-03

2. Copper–zinc/chitosan complex hydrogels: Rheological, degradation and biological properties;International Journal of Biological Macromolecules;2023-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3