Enhancing the Initial Whiteness and Long-Term Thermal Stability of Polyvinyl Chloride by Utilizing Layered Double Hydroxides with Low Surface Basicity

Author:

Shen Guanhua1,Zhao Yanhua1,Ma Mingxin2,Wang Yongli1,Hao Xiangying1,Yuan Guodong1ORCID

Affiliation:

1. Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, College of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing 526061, China

2. College of Chemistry & Environmental Science, Inner Mongolia Normal University, Hohhot 010022, China

Abstract

This study investigated the impact of surface basicity on the performance of layered double hydroxides (LDHs) as heat stabilizers for polyvinyl chloride (PVC). LDHs with varying surface basicity were synthesized and characterized using XRD, SEM, BET, and CO2-TPD. The LDHs were then combined with zinc stearate and dibenzoylmethane to create an environmentally friendly heat stabilizer and added to PVC. The resulting PVC composites were evaluated for thermal stability using the oven-aging method. The results showed that a lower Mg/Al molar ratio (2.0) improved the initial whiteness and long-term thermal stability of PVC composites compared to higher ratios (2.5, 3.0, and 3.5). Replacing Mg with Zn in the LDHs had a similar effect to that of reducing the Mg/Al ratio. Crosslinking the laminae of LDHs with 5% silane coupling agent KH-560 reduced the surface basicity of LDHs by 79%, increasing the chromaticity index, b*, and thermal stability time of PVC composites by 48% and 14%, respectively. A descriptive relationship was established between the structure and surface basicity of LDHs and the initial whiteness and long-term thermal stability of PVC composites.

Funder

the Department of Science and Technology of Guangdong Province

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3