Structure-Bioactivity Relationship of the Functionalized Polysulfone with Triethylphosphonium Pendant Groups: Perspective for Biomedical Applications

Author:

Dobos Adina Maria1,Popa Adriana2,Rimbu Cristina Mihaela3ORCID,Filimon Anca1

Affiliation:

1. Department of Polycondensation and Thermally Stable Polymers, “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iasi, Romania

2. “Coriolan Dragulescu” Institute of Chemistry, Mihai Viteazul Blv., 24, 300223 Timisoara, Romania

3. Department of Public Health, University of Life Science Iasi, 8 Mihail Sadoveanu Alley, 707027 Iasi, Romania

Abstract

Development of new biomaterials based on polysulfones tailored to act in various biomedical fields represents a promising strategy which provides an opportunity for enhancing the diagnosis, prevention, and treatment of specific illnesses. To meet these requirements, structural modification of the polysulfones is essential. In this context, for design of new materials with long-term stability, enhanced workability, compatibility with biological materials and good antimicrobial activity, the functionalization of chloromethylated polysulfones with triethylphosphonium pendant groups (PSFEtP+) was adopted. The surface chemistry analysis (Fourier transform infrared spectroscopy (FTIR), Energy-dispersive X-ray spectroscopy (EDX)), rheological properties, morphological aspects (Scanning electron microscopy (SEM), polarized light microscopy (POM)), and antimicrobial activity of the synthetized polysulfone were investigated to establish the relationship between its structure and properties, as an important indicator for targeted applications. Based on the obtained features, evaluated by the relationship between the rheological properties and microstructural aspects, and also the response at the biomaterial-bacteria interface, these qualities have been confirmed in their performance, in terms of thermal stability, antimicrobial activity, and also an increase in lifetime. Consequently, derived results constitute the preliminary basis for future tests concerning their functionality as gel matrices in biomedical devices.

Funder

Ministry of Research, Innovation and Digitization, CCCDI

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3