Dispersion Homogeneity of Silicon Anode Slurries with Various Binders for Li-Ion Battery Anode Coating

Author:

Kim Bogyoung1ORCID,Song Yeeun1ORCID,Youn Byungwook1,Lee Doojin1ORCID

Affiliation:

1. Department of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, Republic of Korea

Abstract

We aimed to determine the relationship between surface chemistry and the rheological properties of silicon anode slurries in lithium-ion batteries. To accomplish this, we investigated the use of various binders such as PAA, CMC/SBR, and chitosan as a means to control particle aggregation and improve the flowability and homogeneity of the slurry. Additionally, we utilized zeta potential analysis to examine the electrostatic stability of the silicon particles in the presence of different binders, and the results indicated that the conformations of the binders on the silicon particles can be influenced by both neutralization and the pH conditions. Furthermore, we found that the zeta potential values served as a useful metric for evaluating binder adsorption and particle dispersion in the solution. We also conducted three-interval thixotropic tests (3ITTs) to examine the structural deformation and recovery characteristics of the slurry, and the results demonstrated that these properties vary depending on the strain intervals, pH conditions, and chosen binder. Overall, this study emphasized the importance of taking into account surface chemistry, neutralization, and pH conditions when assessing the rheological properties of the slurry and coating quality for lithium-ion batteries.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3