Fused Deposition Modeling and Characterization of Heat Shape Memory Poly(lactic) Acid-Based Porous Vascular Scaffold

Author:

Zhang Li,Hanif MuhammadORCID,Li JiachengORCID,Shah Abdul Hakim,Hussain Wajid,Zhang Guotao

Abstract

Shape memory polymers have received widespread attention from researchers because of their low density, shape variety, responsiveness to the environment, and transparency. This study deals with heat-shape memory polymers (SMPs) based on polylactic acid (PLA) for designing and fabricating a novel porous vascular scaffold to treat vascular restenosis. The solid isotropic material penalization method (SIMP) was applied to optimize the vascular scaffolds. Based on the torsional torque loading of Hyperworks Optistruct and the boundary conditions, the topological optimization model of a vascular scaffold unit was established. Forward and reverse hybrid modeling technology was applied to complete the final stent structure’s assembly. The glass transition temperature for the present SMPs is 42.15 °C. With the increase in temperature, the ultimate tensile strength of the SMPs is reduced from 29.5 MPa to 11.6 MPa. The maximum modulus at room temperature was around 34 MPa. Stress relaxation curves show that the material classification is a “thermoset” polymer. The superb mechanical properties, the transition temperature of the SMPs, and the recovery ratio made it a feasible candidate for a vascular scaffold. A circular tube based on the shape memory polymers was presented as an example for analyzing the recovery ratio in an unfolding state. A higher recovery ratio was obtained at a temperature of 65 °C with a tube thickness of 2 mm. Finally, the proposed porous vascular scaffold was successfully fabricated, assessed, and compared with the original and previously developed vascular scaffolds. The proposed scaffold structure regains its initial shape with a recovery ratio of 98% (recovery temperature of 47 °C) in 16 s. The tensile strength, Young’s modulus, and bending strength of the proposed scaffold were 29.5 MPa, 695.4 MPa, and 6.02 MPa, respectively. The results showed that the proposed scaffold could be regarded as a potential candidate for a vascular implantation.

Funder

National Key R&D Program of China

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3