Thermal Lens Measurements of Thermal Expansivity in Thermosensitive Polymer Solutions

Author:

Ruzzi Vincenzo1ORCID,Buzzaccaro Stefano1ORCID,Piazza Roberto1ORCID

Affiliation:

1. Department of Chemistry, Materials Science and Chemical Engineering (CMIC) “Giulio Natta”, Politecnico di Milano, Edificio 6, Piazza Leonardo da Vinci 32, 20133 Milano, Italy

Abstract

The weak absorption of a laser beam generates in a fluid an inhomogeneous refractive index profile acting as a negative lens. This self-effect on beam propagation, known as Thermal Lensing (TL), is extensively exploited in sensitive spectroscopic techniques, and in several all-optical methods for the assessment of thermo-optical properties of simple and complex fluids. Using the Lorentz–Lorenz equation, we show that the TL signal is directly proportional to the sample thermal expansivity α, a feature allowing minute density changes to be detected with high sensitivity in a tiny sample volume, using a simple optical scheme. We took advantage of this key result to investigate the compaction of PniPAM microgels occurring around their volume phase transition temperature, and the temperature-driven formation of poloxamer micelles. For both these different kinds of structural transitions, we observed a significant peak in the solute contribution to α, indicating a decrease in the overall solution density—rather counterintuitive evidence that can nevertheless be attributed to the dehydration of the polymer chains. Finally, we compare the novel method we propose with other techniques currently used to obtain specific volume changes.

Funder

Italian Ministry of University and Research

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3