Effect of Silicone Modifier on the Physical Properties of Flexible Silica Aerogels

Author:

Luo Kun-Hao1,Yan Min-Si1,Chang Chen-An1,Weng Chih-Wei1,Yeh Jui-Ming1ORCID

Affiliation:

1. Department of Chemistry, Chung Yuan Christian University, Chung Li District‚ Tao-Yuan City 32023, Taiwan

Abstract

Research on the development of flexible silica aerogels (FSAs) has been ongoing due to their excellent thermal insulation, low density, and high elasticity. However, the physical properties of FSAs, such as density, thermal conductivity, mechanical strength, and surface wettability, are highly dependent on the preparation conditions. To achieve the desired properties of FSAs for various applications, it is necessary to develop a method to fine-tune their physical properties. In this paper, two modifiers of methyltrimethoxysilane (MTMS)/trimethylethoxysilane (TMES) were employed to fine-tune the bulk density of a series of flexible silica aerogels (FSAs), reflecting a series of FSAs with fine-tunable physical properties. First, the precursor was synthesized by a click reaction between vinyltrimethoxysilane (VTMS) and 2,2′ (ethylenedioxy) diethanethiol (EDDET). The VTMS, EDDET, and the as-prepared precursor were characterized by FT-IR and NMR spectroscopy. Subsequently, the precursor was converted into a series of FSAs (denoted by FSA, FSA-M, and FSA-T) through conventional sol-gel reactions with/without MTMS/TMES. Chemical structures of synthesized FSAs were confirmed by 13C and 29Si solid-state NMR spectroscopy. The porous structure of FSAs was identified by BET and SEM, respectively. Physical properties, such as thermal conductivity, mechanical strength, and surface wettability of FSAs were determined by a Hot Disk, durometer/DMA in compression mode, and contact angle measurements, respectively. This study found FSAs containing none, 1 wt%, 5 wt%, and 10 wt% of MTMS increase the density of FSAs from 0.419 g/cm3 (FSA), 0.423 g/cm3 (FSA-M1), 0.448 g/cm3 (FSA-M5), and 0.456 g/cm3 (FSA-M10). It should be noted that the thermal conductivity, surface hardness, bulk mechanical strength, and hydrophobicity of FSA-Ms of increasing MTMS loading were all found to show a rising trend, while FSA-Ts exhibited lower density. FSA-T10 exhibited lower thermal conductivity, surface hardness, and bulk mechanical strength as compared to FSA. However, it was found to show higher hydrophobicity as compared to that of FSA.

Funder

The National Science and Technology Council, Taiwan

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3