Effect of Annealing Process and Molecular Weight on the Polymorphic Transformation from Form II to Form I of Poly(1-butene)

Author:

Zhang Zhenkang12,Xue Yanhu1ORCID,Li Rui2,Liu Wei2,Liu Peng1,Ji Xiangling2

Affiliation:

1. College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China

2. State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China

Abstract

Poly(1-butene) (PB-1) resin has excellent mechanical properties, outstanding creep resistance, environmental stress crack resistance and other excellent properties. However, PB-1 resin experiences a crystal transformation for a period, which seriously affects the production efficiency and directly restricts its large-scale commercial production and application. The factors affecting the crystal transformation of PB-1 are mainly divided into external and internal factors. External factors include crystallization temperature, thermal history, nucleating agent, pressure, solvent induction, etc., and internal factors include chain length, copolymerization composition, isotacticity, its distribution, etc. In this study, to avoid the interference of molecular weight distribution on crystallization behavior, five PB-1 samples with narrow molecular weight distribution (between 1.09 and 1.44) and different molecular weights (from 23 to 710 k) were chosen to research the influence of temperature and time in the step-by-step annealing process and molecular weight on the crystal transformation by differential scanning calorimetry (DSC). When the total annealing time was the same, the step-by-step annealing process can significantly accelerate the rate of transformation from crystal form II to I. PB-1 samples with different molecular weights have the same dependence on annealing temperature, and the optimal nucleation temperature (i.e., low annealing temperature, Tl) and growth temperature (i.e., high annealing temperature, Th) were −10 °C and 40 °C, respectively. At these two temperatures, the crystal form I obtained by step-by-step annealing had the highest content; other lower or higher annealing temperatures would reduce the rate of crystal transformation. When the annealing temperature was the same, crystal form I first increased with annealing time tl, then gradually reached a plateau, but the time to reach a plateau was different. The crystalline form I contents of the samples with lower molecular weight increased linearly with annealing time th. However, the crystalline form I contents of the samples with higher molecular weight increased rapidly with annealing time th at the beginning, and then transformation speed from form II to form I slowed down, which implied that controlling Tl/tl and Th/th can tune the different contents of form I and form II. At the same Tl/tl or Th/th, with increasing molecular weight, the transformation speed from form II to form I via the step-by-step annealing process firstly increased and then slowed down due to the competition of the number of linked molecules and molecular chain mobility during crystallization. This study definitely provides an effective method for accelerating the transformation of poly(1-butene) crystal form, which not only has important academic significance, but also has vital industrial application.

Funder

National Natural Science Foundation of China

Open Research Fund of State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3