Physicochemical Properties of UV-Irradiated, Biaxially Oriented PLA Tubular Scaffolds

Author:

Bhati Pooja12ORCID,Srivastava Alok1,Ahuja Ramya1,Chauhan Pankaj13,Vashisth Priya1,Bhatnagar Naresh1

Affiliation:

1. Department of Mechanical Engineering, Indian Institute of Technology, Delhi 110016, India

2. Department of Mechanical and Automation, Indira Gandhi Delhi Technical University for Women, Delhi 110006, India

3. Homi Bhabha Cancer Hospital and Research Centre, Visakhapatnam 530053, India

Abstract

PLA and its blends are the most extensively used materials for various biomedical applications such as scaffolds, implants, and other medical devices. The most extensively used method for tubular scaffold fabrication is by using the extrusion process. However, PLA scaffolds show limitations such as low mechanical strength as compared to metallic scaffolds and inferior bioactivities, limiting their clinical application. Thus, in order to improve the mechanical properties of tubular scaffolds, they were biaxially expanded, wherein the bioactivity can be improved by surface modifications using UV treatment. However, detailed studies are needed to study the effect of UV irradiation on the surface properties of biaxially expanded scaffolds. In this work, tubular scaffolds were fabricated using a novel single-step biaxial expansion process, and the surface properties of the tubular scaffolds after different durations of UV irradiation were evaluated. The results show that changes in the surface wettability of scaffolds were observed after 2 min of UV exposure, and wettability increased with the increased duration of UV exposure. FTIR and XPS results were in conjunction and showed the formation of oxygen-rich functional groups with the increased UV irradiation of the surface. AFM showed increased surface roughness with the increase in UV duration. However, it was observed that scaffold crystallinity first increased and then decreased with the UV exposure. This study provides a new and detailed insight into the surface modification of the PLA scaffolds using UV exposure.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3