Affiliation:
1. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
2. School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China
Abstract
As research on superhydrophobic materials inspired by the self-cleaning and water-repellent properties of plants and animals in nature continues, the superhydrophobic preparation methods and the applications of superhydrophobic surfaces are widely reported. Silicones are preferred for the preparation of superhydrophobic materials because of their inherent hydrophobicity and strong processing ability. In the preparation of superhydrophobic materials, silicones can both form micro-/nano-structures with dehydration condensation and reduce the surface energy of the material surface because of their intrinsic hydrophobicity. The superhydrophobic layers of silicone substrates are characterized by simple and fast reactions, high-temperature resistance, UV resistance, and anti-aging. Although silicone superhydrophobic materials have the disadvantages of relatively low mechanical stability, this can be improved by the rational design of the material structure. Herein, we summarize the superhydrophobic surfaces made from silicone substrates, including the cross-linking processes of silicones through dehydration condensation and hydrosilation, and the surface hydrophobic modification by grafting hydrophobic silicones. The applications of silicone-based superhydrophobic surfaces have been introduced such as self-cleaning, corrosion resistance, oil–water separation, etc. This review article should provide an overview to the bioinspired superhydrophobic surfaces of silicone-based materials, and serve as inspiration for the development of polymer interfaces and colloid science.
Funder
National Natural Science Foundation of China
National Key R&D Program of China
Haihe Laboratory of Sustainable Chemical Transformations
Young Elite Scientists Sponsorship Program by Tianjin
Subject
Polymers and Plastics,General Chemistry
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献