Affiliation:
1. School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China
Abstract
The paper presents a feasible strategy through one-step bulk-suspension polymerization, grafting PEG onto an in situ synthesized copolymer. In more detail, PEG was grafted onto a homemade polystyrene/maleic anhydride copolymer (SMA) via bulk-suspension polymerization with poly(vinyl alcohol) as a suspending agent. According to the optimal reaction conditions, the grafting rate of PEG was 56.2% through chemical titration experiments. At the same time, the quantitative relationship between the grafting rate and enthalpy was demonstrated for the first time in a PEG-based solid–solid phase change material (S-SPCM). Morphology observation revealed that the obtained S-SPCM is made up of white microspheres of approximately 100–150 μm. The powdery product polystyrene/maleic anhydride grafted polyethylene glycol (SMA-g-PEG) obtained through bulk-suspension polymerization endowed that the whole product could be used directly as a phase change material without postprocessing. The melting enthalpy and crystallization enthalpy of SMA-g-PEG were 79.3 J/g and 76.9 J/g, respectively. Based on the effective fixed load of PEG, the macrostructure of SMA-g-PEG was almost unchanged at 70 °C compared with the macrostructures at 20 °C, and the latent heat of SMA-g-PEG was decreased slightly after 1000 thermal cycles. Overall, the obtained SMA-g-PEG can be used as a filler in insulation materials and composited with fibers to obtain phase change thermoregulated smart textiles.
Funder
Department of Education Basic Research Project of Liaoning Province
Dalian Science and Technology Innovation Fund Project of Dalian City
Subject
Polymers and Plastics,General Chemistry
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献