Effect of GO on the Structure and Properties of PEG/Biochar Phase Change Composites

Author:

Chen Weijie1,Zhang BingBing12,Wang Sheng1ORCID,Xue Bin1,Liu ShiWang3,An MingZhe1,Yang Zhao1,Xu Guomin1

Affiliation:

1. National Engineering Research Center for Compounding and Modification of Polymer Materials, Guiyang 550014, China

2. College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China

3. Department of Polymer Material and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China

Abstract

In recent years, phase change materials (PCMs) have been widely used in waste heat utilization, buildings, and solar and wind energy, but with a huge limitation from the low thermal conductivity, photothermal conversion efficiency, and low latent heat. Organic PCMs are eyecatching because of its high latent heat storage capability and reliability, but they still suffer from a lack of photothermal conversion and sharp stability. Here, we prepared sharp-stable PCMs by establishing a carbon material frame system consisting of graphene oxide (GO) and biochar. In particular, surfactants (CTAB, KH-560 and KH-570) were employed to improve the dispersity of GO in PEG. The differential scanning calorimetry results shows that the latent heat of PEG modified by CTAB grafted GO (PGO-CTAB) was the highest (191.36 J/g) and increased by 18.31% compared to that of pure PEG (161.74 J/g). After encapsulation of PGO-CTAB in biochar, the obtained composite PCM with the amount of biochar and PGO-CTAB in weight ratio 4:6 (PGO-CTAB/CS6(6)) possesses relatively high latent heat 106.51 J/g with good leak resistance and thermal stability, and with obviously enhanced thermal conductivity (0.337 W/(m·K)) and photothermal conversion efficiency (77.43%), which were higher than that of PEG6000 (0.325 W/(m·K), 44.63%). The enhancement mechanism of heat transfer and photothermal conversion on the composite PCM is discussed.

Funder

Guizhou Science and Tech-nology Support Program Project

the Fund Project of Guizhou Province

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3