Affiliation:
1. Ciência e Tecnologia de Pernambuco (IFPE-Campus Recife), Instituto Federal de Educação, Recife 50740-545, Brazil
2. Departamento de Design, Universidade Federal de Pernambuco, Recife 50670-901, Brazil
3. Departamento de Eletrônica e Sistemas, Universidade Federal de Pernambuco, Recife 50670-901, Brazil
Abstract
We have conducted research on how tactile content is created for visually impaired individuals. From the data collected, an experiment was developed and applied. It investigated alternative materials to serve as a basis for the use of 3D printing to reduce production costs. It also evaluated the adherence of different values of width, height, and angles of the contour lines, as well as different geometric shapes and top/bottom fill patterns on these materials. The results show it is possible to use cellulose-based materials weighing between 120 g/m2 and 180 g/m2 to support the prints instead of making a base for the information, with gains up to 40 times in production time and up to 29 times in the consumption of materials if there is no need to fold the manufactured content. Based on visually impaired every-day activities such as locating and following a line (exploration), discerning different textures (tactile discrimination), identifying figures (picture comprehension), and locating copies of them (spatial comprehension), the ideal line widths for 3D printing adherence regarding tactile content creation were found to be between 0.8 mm and 1.2 mm, while 0.4 mm was the maximum height that did not compromise adherence. When bending the 3D printed material on the surface, we found that lines with angles between 0° and 20° from the bending direction could keep their adherence as well. The shapes must receive a small rounding at the corners and preferably align themselves with the mentioned angles. The top/bottom fill patterns did not affect adhesion. The infill can be used as a texture generator and should be adjusted to densities of 10% to 50%, or 10% to 90% when combined with other textures. In the first case, users were able to perceive differences in the tactile content whenever a single infill pattern was used. In the latter, combining two infill patterns leads to a more discriminating surface, resulting in a higher number of textures to be used in tactile content production (analogous to the number of colors used in an image for a person with no visual impairment).
Subject
Polymers and Plastics,General Chemistry