Salt Transport in Crosslinked Hydrogel Membranes Containing Zwitterionic Sulfobetaine Methacrylate and Hydrophobic Phenyl Acrylate

Author:

Lin Yi-hung1ORCID,Kim Jung Min12ORCID,Beckingham Bryan S.1ORCID

Affiliation:

1. Department of Chemical Engineering, Auburn University, Auburn, AL 36849, USA

2. Department of Chemical Engineering, University of Virginia, Charlottesville, VA 22903, USA

Abstract

Produced water is a by-product of industrial operations, such as hydraulic fracturing for increased oil recovery, that causes environmental issues since it includes different metal ions (e.g., Li+, K+, Ni2+, Mg2+, etc.) that need to be extracted or collected before disposal. To remove these substances using either selective transport behavior or absorption-swing processes employing membrane-bound ligands, membrane separation procedures are promising unit operations. This study investigates the transport of a series of salts in crosslinked polymer membranes synthesized using a hydrophobic monomer (phenyl acrylate, PA), a zwitterionic hydrophilic monomer (sulfobetaine methacrylate, SBMA), and a crosslinker (methylenebisacrylamide, MBAA). Membranes are characterized according to their thermomechanical properties, where an increased SBMA content leads to decreased water uptake due to structural differences within the films and to more ionic interactions between the ammonium and sulfonate moieties, resulting in a decreased water volume fraction, and Young’s modulus increases with increasing MBAA or PA content. Permeabilities, solubilities, and diffusivities of membranes to LiCl, NaCl, KCl, CaCl2, MgCl2, and NiCl2 are determined by diffusion cell experiments, sorption-desorption experiments, and the solution-diffusion relationship, respectively. Permeability to these metal ions generally decreases with an increasing SBMA content or MBAA content due to the corresponding decreasing water volume fraction, and the permeabilities are in the order of K+ > Na+ > Li+ > Ni2+ > Ca2+ > Mg2+ presumably due to the differences in the hydration diameter.

Funder

U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3