Biocompatibility Study of Hydrogel Biopolymer Scaffold with Encapsulated Mesenchymal Stem Cells

Author:

Egorikhina Marfa N.1ORCID,Timofeeva Lidia B.1,Linkova Daria D.1ORCID,Rubtsova Yulia P.1ORCID,Bugrova Marina L.1ORCID,Charykova Irina N.1,Ryabkov Maxim G.1,Kobyakova Irina I.1,Farafontova Ekaterina A.1ORCID,Aleynik Diana Y.1

Affiliation:

1. Federal State Budgetary Educational Institution of Higher Education, Privolzhsky Research Medical University of the Ministry of Health of the Russian Federation, 603005 Nizhny Novgorod, Russia

Abstract

One of the key and actively developing areas of regenerative medicine is tissue-engineering. There is no doubt that the use of tissue-engineering products can have a significant impact on the efficiency of repair of damaged tissues and organs. However, before being used in clinical practice, tissue-engineering products require thorough preclinical studies to confirm their safety and efficacy, both with in vitro models and in experimental animals. This paper presents preclinical studies of a tissue-engineered construct, based on a hydrogel biopolymer scaffold carrier (consisting of blood plasma cryoprecipitate and collagen) with encapsulated mesenchymal stem cells, to evaluate its biocompatibility in vivo. The results were analyzed using histomorphology and transmission electron microscopy. It was shown that when implanted into animal (rat) tissues, the implants were completely replaced by connective tissue components. We also confirmed that no acute inflammation occurred in response to the scaffold implantation. The observed processes of cell recruitment to the scaffold from the surrounding tissues, the active formation of collagen fibers and the absence of acute inflammation testified that the regeneration process was ongoing in the implantation area. Thus, the presented tissue-engineered construct shows promise for becoming an effective tool for regenerative medicine in the future and may be used, in particular, to repair soft tissues.

Funder

Ministry of Health of the Russian Federation

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Physiochemical and Biomedical Properties of Hydrogels: From Fundamentals to Applications;Hydrogels and Nanogels - Applications in Medicine;2024-01-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3