Aliphatic Polybenzimidazoles: Synthesis, Characterization and High-Temperature Shape-Memory Performance

Author:

Kholkhoev Bato Ch.1,Matveev Zakhar A.1,Bardakova Kseniia N.23ORCID,Timashev Peter S.2345ORCID,Burdukovskii Vitaliy F.1

Affiliation:

1. Baikal Institute of Nature Management, Siberian Branch of the Russian Academy of Sciences, 670047 Ulan-Ude, Russia

2. Research Center “Crystallography and Photonics”, Russian Academy of Sciences, 108840 Moscow, Russia

3. Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia

4. Semenov Institute of Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia

5. Chemical Department, Lomonosov Moscow State University, 119991 Moscow, Russia

Abstract

A series of aliphatic polybenzimidazoles (PBIs) with methylene groups of varying length were synthesized by the high-temperature polycondensation of 3,3′-diaminobenzidine (DAB) and the corresponding aliphatic dicarboxylic acid in Eaton’s reagent. The influence of the length of the methylene chain on PBIs’ properties was investigated by solution viscometry, thermogravimetric analysis, mechanical testing and dynamic mechanical analysis. All PBIs exhibited high mechanical strength (up to 129.3 ± 7.1 MPa), glass transition temperature (≥200 °C) and thermal decomposition temperature (≥460 °C). Moreover, all of the synthesized aliphatic PBIs possess a shape-memory effect, which is a result of the presence of soft aliphatic segments and rigid bis-benzimidazole groups in the macromolecules, as well as strong intermolecular hydrogen bonds that serve as non-covalent crosslinks. Among the studied polymers, the PBI based on DAB and dodecanedioic acid has high adequate mechanical and thermal properties and demonstrates the highest shape-fixity ratio and shape-recovery ratio of 99.6% and 95.6%, respectively. Because of these properties, aliphatic PBIs have great potential to be used as high-temperature materials for application in different high-tech fields, including the aerospace industry and structural component industries.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3