Free Vibration Responses of Functionally Graded CNT-Reinforced Composite Conical Shell Panels

Author:

Cho Jin-Rae1ORCID

Affiliation:

1. Department of Naval Architecture and Ocean Engineering, Hongik University, Jochiwon, Sejong 30016, Republic of Korea

Abstract

Functionally graded CNT (carbon nanotube)-reinforced composites (FG-CNTRCs) are intensively studied because the mechanical behaviors of conventional composites can be dramatically improved. Only a small amount of CNTs are appropriately distributed through the thickness. However, the studies on conical shell panels have been poorly reported when compared with beams, plates and cylindrical shells, even though more parameters are associated with the mechanical behaviors of conical shell panels. In this context, this study intends to profoundly investigate the free vibration of FG-CNTRC conical shell panels by developing an effective and reliable 2-D (two-dimensional) numerical method. The displacement field is expressed using the first-order shear deformation shell theory, and it is approximated by the 2-D planar natural element method (NEM). The conical shell surface is transformed into the 2-D planar NEM grid, and the approach for MITC3+shell element is employed to suppress the shear locking. The developed numerical method is validated through the benchmark experiments, and the free vibration responses of FG-CNTRC conical shell panels are investigated with respect to all the associated parameters. It is found from the numerical results that the free vibration of FG-CNTRC conical shell panels is significantly influenced by the volume fraction and distribution pattern of CNTs, the geometry parameters of the conical shell, and the boundary condition.

Funder

National Research Foundation of Korea

2023 Hongik University Research Fund

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3